Литтл Маунтинмэн

Забывшим физику 10-го класса об энтропии (нет, лучше о хаосе) и её связи с термодинамикой

ЧТО ТАКОЕ ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Термодинамика – это раздел физики, изучающий соотношения и превращения теплоты и других форм энергии. Оно базируется на нескольких основополагающих принципах, называемых началами (иногда – законами) термодинамики. Среди них наиболее известно, наверное, второе начало.

Если сделать небольшой обзор всех начал термодинамики, то вкратце они заключаются в следующем:

Первое начало представляет собой закон сохранения энергии в применении к термодинамическим системам. Его суть в том, что теплота представляет собой особую форму энергии и должна учитываться в законе сохранения и превращения энергии.

Второе начало накладывает ограничения на направление термодинамических процессов, запрещая самопроизвольную передачу тепла от менее нагретых тел к более нагретым. Из него также следует то, что преобразовать теплоту в работу со стопроцентной эффективностью невозможно (неизбежны потери в окружающую среду). Оно делает невозможным и создание вечного двигателя, основанного на этом.

Третье начало утверждает, что невозможно довести температуру никакого физического тела до абсолютного нуля за конечное время, то есть абсолютный ноль недостижим.

Нулевым (или общим) началом иногда называют принцип, согласно которому изолированная система независимо от начального состояния в конце концов приходит к состоянию термодинамического равновесия и самостоятельно выйти из него не может. Термодинамическое равновесие – это состояние, в котором передачи тепла от одной части системы к другой не происходит. (Определение изолированной системы дано ниже.)

Второе начало термодинамики, помимо приведённой выше, имеет и другие формулировки. Вокруг одной из них и вращаются все упомянутые нами споры о сотворении. Эта формулировка связана с понятием энтропии, с которым нам придётся познакомиться.

Энтропия (по одному из определений) – это показатель неупорядоченности, или хаотичности, системы. Говоря простым языком, чем больший хаос царит в системе, тем выше её энтропия. Для термодинамических систем энтропия тем выше, чем более хаотично движение материальных частиц, составляющих систему (например, молекул).

Со временем учёным стало понятно, что энтропия – понятие более широкое и может применяться не только к термодинамическим системам. В общем-то, любая система имеет определённую долю хаоса, которая может изменяться – увеличиваться или уменьшаться. В таком случае уместно говорить и об энтропии. Приведём примеры:

· Стакан воды. Если вода замёрзла и превратилась в лёд, то её молекулы связаны в кристаллическую решётку. Это соответствует большему порядку (меньшей энтропии), чем состояние, когда вода растаяла и молекулы движутся произвольно. Однако, растаяв, вода всё же сохраняет некоторую форму – стакана, в котором она находится. Если же воду испарить, молекулы движутся ещё интенсивнее и занимают весь предоставленный им объём, двигаясь ещё более хаотично. Таким образом, энтропия возрастает ещё сильнее.

· Солнечная система. В ней тоже можно наблюдать и порядок, и беспорядок. Планеты движутся по своим орбитам с такой точностью, что их положение в любой момент времени астрономы могут предсказать на тысячелетия вперёд. Однако в солнечной системе есть несколько поясов астероидов, которые движутся более хаотично – сталкиваются, разбиваются, иногда падают на другие планеты. По предположениям космологов, первоначально вся солнечная система (кроме самого Солнца) была наполнена такими астероидами, из которых потом образовались твёрдые планеты, и двигались эти астероиды ещё более хаотично, чем сейчас. Если это верно, то энтропия солнечной системы (кроме самого Солнца) первоначально была выше.

· Галактика. Галактика состоит из звёзд, двигающихся вокруг её центра. Но и здесь присутствует определённая доля беспорядка: звёзды иногда сталкиваются, меняют направление движения, и из-за взаимного влияния их орбиты неидеальны, меняются в несколько хаотичном порядке. Так что и в этой системе энтропия не равна нулю.

· Детская комната. Тем, у кого есть маленькие дети, возрастание энтропии достаточно часто приходится наблюдать собственными глазами. После того как они сделали уборку, в квартире царит относительный порядок. Однако достаточно нескольких часов (а иногда и меньше) пребывания там одного-двух деток в состоянии бодрствования, чтобы энтропия этой квартиры существенно возросла...

Если последний пример заставил Вас улыбнуться, то, скорее всего, Вы поняли, что такое энтропия.

Возвращаясь ко второму началу термодинамики, вспомним, что, как мы сказали, у него есть ещё одна формулировка, которая связана с понятием энтропии. Она звучит так: в изолированной системе энтропия не может убывать. Другими словами, в любой системе, полностью отрезанной от окружающего мира, беспорядок не может самопроизвольно уменьшаться: он может только возрастать или, в крайнем случае, оставаться на прежнем уровне.

Если положить в тёплую запертую комнату кубик льда, то он через какое-то время растает. Однако образовавшаяся лужица воды этой комнате никогда сама не прерватится обратно в кубик льда. Откройте там же флакончик с духами, и запах распространится по комнате. Но ничто не заставит его вернуться обратно во флакон. Зажгите там свечу, и она сгорит, но ничто не заставит дым снова превратиться в свечу. Всем этим процессам свойственна направленность и необратимость. Причина такой необратимости процессов, происходящих не только в этой комнате, но и во всей Вселенной, как раз и кроется во втором начале термодинамики.

Метки:

Записи из этого журнала по тегу «физика»